DE LA RECHERCHE À L'INDUSTRIE



# GOING ARM A CODE PERSPECTIVE

ISC18 | Guillaume Colin de Verdière

**JUNE 2018** 

GCdV

# A history of disruptions

All dates are installation dates of the machines at CEA/DAM



#### The scalar era

- CDC 7600 1976 1987
- Small central memory
  - Larger out of core memory
- 60bits words
- Fortran
- Scalar codes



- IBM 7094 1963 1966
- IBM 360/50 1966 1973
- CDC 6600 1974 1982







# The first disruption: vectorization

- CRAY 1S 1982 1990
- 64 bits words
- 1 proc
  - 80 MHz
- 160 Mflops





## Stability period

- CRAY XMP 1990 1993
- 4 procs, 0.96 Gflops

- CRAY YMP 1990 1997
- 8 procs, 2.7 Gflops

- CRAY T90 1996 2002
- 24 procs, 1.8Gflops/proc, 454MHz
- IEEE 754
- Main use : concurrent scalar jobs







## Introduction of parallelism (R&D)

- CRAY T3D 1994 1997
- 64 nodes, 128 procs (Alpha @ 150 MHz)
- 2x64MB



- CRAY T3E 1996 2001
- 192 procs (Alpha)

Mainly PVM, a bit of MPI





#### The second disruption: Cluster supercomputers

- TERA-1 2002 2006
- 640 nodes, 4 x EV68
- 5TFlops
- TERA- 10 2006 2011
- 624 nodes, Intel Montecito @ 1.5GHz, 48GB/node
- TERA-100 2011 2018
- 4370 nodes, Intel Xeon 7500
- 5 MW
- HPL: 1.05Pflops
- MPI
- Domain decomposition mainly









#### The third disruption: multi level parallelism

- TERA1000-2
- 8004 nodes, KNL
- 4MW
- HPL: 11.96 Pflops



- Strong impact on codes: 3 level parallelization
- MPI across nodes
- OpenMP across cores
- Vectorization inside a core
- The dawn of the fourth disruption
- Energy Awareness

Reasons to go Arm



#### Code portability is essential

- Our code are long lived
- 20 30 years
  - = Several generations of supercomputers
- Most are mission critical
- Tera 10 100 1000 are Intel based
- Need an alternative architecture to validate codes
  - Different compilers
    - Standards interpretations
  - Different optimized libraries
    - Rounding influences
  - Different ISA
    - Difference in optimizations



#### Codes in the future

- Energy is becoming more and more important
- Our focus is on exascale class machines for ~2022
- Balanced between Energy to Solution and Time to Solution
  - Certain classes of codes are better suited to E2S
    - Older ones are more T2S
- Codes will have to adapt to this new constraint
- Better dialog with the system
  - hints to SLURM, frequency regulation, ...
- New energy aware algorithms
  - Minimize data movements
  - Make the developers conscious of the resources used.



#### **Arm Proof of Concept future partition**

- Goal: study emerging high efficiency architectures
- Architecture based on the Mont-Blanc3<sup>(\*)</sup> project results
- To be installed later in 2018.

|                 | Future partition                     |
|-----------------|--------------------------------------|
| Node type       | 2* THX2 (30 cores @ 2.2 GHz tbc)     |
| # compute nodes | 160 (tbc)                            |
| Memory size     | 256 GB / node                        |
| I/O router      | 20 GB/s                              |
| Interconnect    | EDR pruning 1:2                      |
| Cooling         | DLC ( <b>Sequana</b> infrastructure) |

<sup>(\*)</sup> This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement n° 671697

**Challenges going Arm** 



## The compiler and runtime matter

- Lulesh
- V2.0.3, OpenMP
- GCC 7.3
- Cce/8.6.2

Parallel efficiency

Cavium ThunderX2<sub>0.2</sub>

A2 stepping





### **Optimized libraries matter (1/2)**

- A standard Arm version of Intel SVML
  - SVML is automatically used by Intel compiler
- <u>https://developer.arm.com/products/software-development-tools/hpc/documentation/vector-math-routines</u>
  - -fsimdmath for C/C++
    - Based on SLEEF Vectorized Math Library <a href="http://sleef.org/">http://sleef.org/</a>



What about optimized FTN? is **flang** up to the task?



### **Optimized libraries matter (2/2)**

- Intel MKL library is heavily used in production
  - Blas, Lapack, FFT, ...
- In most cases hand coded algorithms don't beat MKL



- In the Arm world, optimized libraries start to exist
- https://developer.arm.com/products/software-development-tools/hpc/arm-performance-libraries
  - BLAS Basic Linear Algebra Subprograms (including XBLAS, the extended precision BLAS).
  - **LAPACK** a comprehensive package of higher level linear algebra routines.
  - FFT a set of Fast Fourier Transform routines for real and complex data.
  - Math Routines Optimized exp, pow and log routines

Multithreaded versions?

TBB?

Tasks in general?



#### Prepare our code port: CEA-Arm/Allinea collaboration

- Longstanding collaboration between CEA and Allinea
- CEA has funded quite a lot DDT, MAP and Performance Report
  - Scalability (large number of cores, large number of libraries, KNL, ...)
  - Robustness
  - Thread support (MPC, OpenMP)
  - C++ friendliness
  - Allinea Metric Plugin Interface compatibility with OpenSource profiling tools like MALP (<a href="http://malp.hpcframework.com">http://malp.hpcframework.com</a>)
- Collaboration extension to Arm (WiP)
- Idea: have the same developer experience on Arm and on X86
- New items for co-design
  - Compiler
    - MPC support in LLVM, linker optimization, ...
  - Optimized scientific libraries
  - Profiling and debugging tools for Arm
    - MPI, perf counters, vectorization, ...
    - Thread debugging
  - OS support (Work in Progress)



#### Conclusion

- Energy to Solution will gain importance
- Arm based solutions are to be investigated seriously
- Arm based (super)computers are available now
- Thanks to MontBlanc3 (Atos) but also CRAY, HPE, ...
- The software ecosystem is maturing fast
- Compiler and libraries provided by Arm
- Allinea tools
- It is time to start porting codes to Arm
- And investigate new algorithms that take Energy into account

Commissariat à l'énergie atomique et aux énergies alternatives Centre DAM Ile-de-France | 91297 Arpajon Cedex, France T. +33 (0)1 69 26 40 00 DAM DSSI