OPTIMIZING AN RBF INTERPOLATION SOLVER
An ARM Porting Story

Patrick Schiffmann
AVL List GmbH (Headquarters)
OUTLINE

1. Motivation & Background
2. Porting to ARM
3. Baseline Comparison
4. Optimizations
5. Lessons learned
AVL

- World's largest independent company for development, simulation and testing technology of powertrains

- 8600 employees, 65% scientists and engineers
- About 1.5bn € revenue, 10% R&D

- Advanced Simulation Technologies
 - Development of new simulation methods
 - HPC mostly relevant for Fluid Dynamics
In our application, meshes are
- unstructured
- \(O(1M) \) – \(O(100M) \) cells

When geometry changes, mesh must adapt
- meshing is expensive
- frequent interpolation combined with rare re-meshing is preferred

Mesh quality important for
- Quality of results
- Convergence speed
MATHEMATICAL FORMULATION

General approximation:

- set of points $\mathcal{X} = \{x_i\}_{i=1}^N$ is given
- function values $f_i = f(x_i)$ are given (f unknown)
- search for an approximating function $s : s|\mathcal{X} = f|\mathcal{X}$.

In the context of **RBF interpolation** we seek for an interpoland of the form

$$s(x) = \sum_{i=1}^{N} \lambda_i \phi(\|x_i - x\|) + p(x), \quad \lambda_i \in \mathbb{R}, p \in \mathbb{P}^M.$$ \hspace{1cm} (1)

Polynomial term p is required for the existence and uniqueness of a solution.
MATHEMATICAL FORMULATION

Requiring the interpolation condition $s|_{\mathcal{X}} = f|_{\mathcal{X}}$ in all given points and the unisolvency of the set \mathcal{X} for \mathbb{P}_d^M, thus $p|_{\mathcal{X}} = 0 \Rightarrow p \equiv 0$ and demanding a side condition on the coefficients of the polynomial term leads to a system of linear equations for the determination of the coefficients λ and π:

\[
\sum_{i=1}^{N} \lambda_i \phi(||x_i - x_k||) + \sum_{j=1}^{M} \pi_j p_j(x_k) = f(x_k), \quad 1 \leq k \leq N,
\]

\[
\sum_{i=1}^{N} \lambda_i p_i(x_i) = 0, \quad 1 \leq l \leq M, \tag{2}
\]

or, in short notation

\[
\begin{pmatrix}
\Phi & \Pi \\
\Pi^\top & 0
\end{pmatrix}
\begin{pmatrix}
\lambda \\
\pi
\end{pmatrix}
=
\begin{pmatrix}
f \\
0
\end{pmatrix}. \tag{3}
\]

Solving (3) provides all information to evaluate the RBF approximate $s(x)$.
PROBLEM SIZE

- Dense linear system in N variables
 - N = number of points which define the deformation

- Direct Solution
 - Complexity $O(N^3)$
 - System Matrix 8TB Memory for 1M points
 - Possible on supercomputers, but we target
 - Work stations
 - Production jobs up to 1000 cores
 - Mont-Blanc 3 Prototype

- By exploiting the properties of the problem
 - Reduce memory and runtime
 - Trade scalability and parallel efficiency
FGP ALGORITHM

RBF: \[\sqrt{r^2 + c^2} \] (multiquadric biharmonics) and constant polynomial terms. The system, \(i = 1, \ldots, n \), \(j = 1, \ldots, M \)

\[
\begin{pmatrix}
\Phi \\
\Pi \\
\Pi^T \\
0
\end{pmatrix}
\begin{pmatrix}
\frac{\lambda}{\pi} \\
0
\end{pmatrix}
=
\begin{pmatrix}
f \\
0
\end{pmatrix}; \quad \Phi_{ij} = \Phi(x_i - x_j), \quad P_{ij} = P_j(x_i)
\]

is solved via FGP algorithm, a special Krylov subspace algorithm for RBF [Faul/Goodsell/Powell’05]:

- no matrix is stored
- operation Matrix*Vector directly implemented
 - **Brute force:** direct implementation of \(\Phi \cdot \lambda \) \(\mathcal{O}(N^2) \)
 - **Multipole** approx. \(\tilde{\Phi} \) of \(\Phi \) is used. \(\mathcal{O}(N \log N) \)
- Krylov operator construction for FGP
 - appropriates for our RBF with constant polynomial
 - approximates \(\Phi^{-1} \) by 51 entries per row. Octree is used for neighborhood relations: \(\mathcal{O}(N \log N) \)
 - \(< 30 \) iterations to solve the system
while not converged do
 for each level in MultiLevel-DD do
 for each box in DD[level] do
 if points in box < threshold then
 solveDirectly(box)
 else
 solveFMM(box)
 end
 end
 end
 applyResultsToNextLevel()
end
end
calcResidual()
PORTING TO ARM I

- Starting point
 - AVL joined Mont-Blanc 3 project, I joined AVL
 - Code was 15k LOC C++
 - Designed for doing a math PhD, not HPC production use
 - Only ever built / ran using Intel tools on Intel CPUs
 - Depending on internal library
 - Only available for x86 due to other dependencies
 - Sharing of code open question

- Preparation
 - Build with GCC on x86, try to match performance
 - Remove dependencies for which code to build on ARM is unavailable
 - Hopefully, most would start here
PORTING TO ARM II

- Mont-Blanc mini clusters at Barcelona Supercomputing Center
 - 4x ThunderX (2 Socket, 48 Cores each)
 - 16x Jetson-Tx (4 Cores)

- First compilation via emulated Ubuntu VM inhouse
 - Works ~50x slower than native
 - Avoid if possible, but can be helpful

- Issues
 - Lack of documentation
 - Good personal support and trial & error helped
 - Some problems with
 - Length of data types, struct packing, BLAS/LAPACK includes and naming conventions, ...
 - Porting made code quality issues visible
FIRST RESULTS

Runtime

Speedup
MULTI LEVEL DOMAIN DECOMPOSITION WITH HALOS

$X_\ell \subset X_{\ell+1}$
HYBRID ALGORITHM

- Inherent load balance issues
 - In level N there are 8^N boxes
 - Boxes need at least $\sim 2k$ points for algorithm to converge fast
 - Final level(s) need more boxes than MPI processes

```
while not converged do
    for each level in MultiLevel-DD do
        for each box in DD[level] do
            if points in box < threshold then
                solveDirectly(box)
            else
                solveFMM(box)
            end
        end
    end
    applyResultsToNextLevel()
end
```

 MPI+OMP

 OpenMP
THEORETICAL PERFORMANCE LIMITS
HYBRID CODE

- Sweep over process/thread space for all refinement levels
- Better scaling on both platforms
- Low variability on Xeon, pure threading fastest
- Very high var. on ThunderX, one process per socket
HYBRID CODE

- Sweep over process/thread space for all refinement levels
- Better scaling on both platforms
- Low variability on Xeon, pure threading fastest
- Very high var. on ThunderX, one process per socket
EXPLICIT VECTORISATION

- Kernel: Evaluating polynomial of degree 12 in 3 variables
 - Sum of exponents limited, reducing work to 1/6th
 - Valid: $x, y^2, x + y^2, \ldots x + y + z^{10}$
 - Invalid: $x^{13}, x^{10} + y^3, \ldots$
 - Auto vectorisation only worked without exploiting this reduction

- Kernel speed-up
 - Xeon 2.1x
 - ThunderX 1.8x
 - Vectors are in $[N][455]$ array, so not well aligned

- Different intrinsics per ISA/compiler are cumbersome
 - Elegant solution would make application writers happy
 - E.g. VCL Vector Class Library, www.agner.org/optimize
 - Not supporting ARM out of the box, GPL licensed
Code used basic MPI Methods

Moving from to better suited methods gave ~5x

Communication was no bottleneck, but results for large process counts became more stable
NEXT STEPS

- Auto-tune parameters to system
 - At compile or run time?

- Find solution for coarse iterations
 - Hybrid with more threads, less processes?
 - Smart potential parallelism as with TBB vs OMP_NESTED?
 - Use serial and parallel BLAS depending on level

- Study on energy / total cost of operations
 - Potential for use in non time critical parameter studies

- Heterogeneous systems
 - For real work loads, boxes are not exactly same amount of work
 - Take imbalance into account when distributing work
 - Have dedicated (accelerated?) node for work on critical path
LESSONS LEARNED

• Porting code is easy when
 • No binary dependencies
 • No specific intrinsics, inline asm, ...

• Performance
 • 5 - 10x difference in serial
 • Similar or better scaling on ARM
 • Scalability really limited by application, not system

• Vendor lock-in is painful
 • Unexpected number of bugs discovered
 • Desirable be able to move fast to a new platform
REFERENCES & ACKNOWLEDGEMENTS

- Thanks to BSC, ARM and UVSQ
- This work is supported by Horizon 2020 grant No 671697